资源类型

期刊论文 352

会议视频 3

年份

2024 1

2023 21

2022 31

2021 32

2020 15

2019 24

2018 22

2017 17

2016 12

2015 14

2014 20

2013 16

2012 7

2011 19

2010 22

2009 12

2008 23

2007 19

2006 5

2005 5

展开 ︾

关键词

力学性能 4

个人热管理 2

卫星 2

机器学习 2

汽车轻量化 2

热分析 2

6016 铝合金 1

9 %~12 % Cr 钢 1

&prime 1

&gamma 1

CFRP索斜拉桥 1

DX桩 1

EBSD 1

Fluent 1

IHNI-1反应堆;热工水力;子通道;安全分析 1

Inconel 718合金 1

K型钢管混凝土节点 1

M23C6 碳化物 1

Ni–Ti–Cu–V合金 1

展开 ︾

检索范围:

排序: 展示方式:

novel strategy for the construction of silk fibroin–SiO composite aerogel with enhanced mechanical propertyand thermal insulation performance

《化学科学与工程前沿(英文)》 2023年 第17卷 第3期   页码 288-297 doi: 10.1007/s11705-022-2222-7

摘要: The practical application of silica aerogels is an enormous challenge due to the difficulties in improving both mechanical property and thermal insulation performance. In this work, silk fibroin was used as scaffold to improve the mechanical property and thermal insulation performance of silica aerogels. The ungelled SiO2 precursor solution was impregnated into silk fibroin to prepare silk fibroin–SiO2 composite aerogels via sol−gel method followed by freeze-drying. By virtue of the interfacial hydrogen-bonding interactions and chemical reactions between silk fibroin and silica nanoparticles, SiO2 was well-dispersed in the silk fibroin aerogel and composite aerogels exhibited enhanced mechanical property. By increasing the loading of silk fibroin from 15 wt % to 21 wt %, the maximum compressive stress was enhanced from 0.266 to 0.508 MPa when the strain reached 50%. The thermal insulation performance of the composite aerogels was improved compared with pure silica aerogel, as evidenced that the thermal conductivity was decreased from 0.0668 to 0.0341 W∙m‒1∙K‒1. Moreover, the composite aerogels exhibited better hydrophobicity and fire retardancy compared to pure silica aerogel. Our work provides a novel approach to preparing silk fibroin–SiO2 composite aerogels with enhanced mechanical property and thermal insulation performance, which has potential application as thermal insulation material.

关键词: silica aerogel     silk fibroin     impregnation     thermal insulation     mechanical property    

Adsorption property of direct fast black onto acid-thermal modified sepiolite and optimization of adsorption

Chengyuan SU, Weiguang LI, Yong WANG

《环境科学与工程前沿(英文)》 2013年 第7卷 第4期   页码 503-511 doi: 10.1007/s11783-012-0477-9

摘要: The adsorption of direct fast black onto acid-thermal modified sepiolite was investigated. Batch adsorption experiments were performed to evaluate the influences of experimental parameters such as initial dye concentration, initial solution pH and adsorbent dosage on the adsorption process. The three-factor and three-level Box-Behnken response surface methodology (RSM) was utilized for modeling and optimization of the adsorption conditions for direct fast black onto the acid-thermal modified sepiolite. The raw sepiolite was converted to acid-thermal modified sepiolite, and changes in the fourier transform infrared spectrum (FTIR) adsorption bands of the sample were noted at 3435 cm and 1427 cm . The zeolitic water disappeared and the purity of sepiolite was improved by acid-thermal modification. The decolorization rate of direct fast black adsorbed increased from 68.2% to 98.9% on acid-thermal modified sepiolite as the initial solution pH decreased from 10 to 2. When the adsorbent dosage reached to 2.5 g·L , 2.0 g·L , 1.5 g·L and 1.0 g·L , the decolorization rate was 90.3%, 86.7%, 61.0% and 29.8%, respectively. When initial dye concentration increased from 25 to 200 mg·L , the decolorization rate decreased from 91.9% to 60.0%. The RSM results showed that the interaction between adsorbent dosage and pH to be a significant factor. The optimum conditions were as follows: the adsorbent dosage 1.99 g·L , pH 4.22, and reaction time 5.2 h. Under these conditions, the decolorization rate was 95.1%. The three dimensional fluorescence spectra of direct fast black before and after treatment showed that the direct fast black was almost all adsorbed by the acid-thermal modified sepiolite.

关键词: direct fast black     acid-thermal modified sepiolite     adsorption     response surface methodology    

Thermal radiative properties of metamaterials and other nanostructured materials: A review

Ceji FU, Zhuomin M. ZHANG

《能源前沿(英文)》 2009年 第3卷 第1期   页码 11-26 doi: 10.1007/s11708-009-0009-x

摘要: The ability to manufacture, control, and manipulate structures at extremely small scales is the hallmark of modern technologies, including microelectronics, MEMS/NEMS, and nano-biotechnology. Along with the advancement of microfabrication technology, more and more investigations have been performed in recent years to understand the influence of microstructures on radiative properties. The key to the enhancement of performance is through the modification of the reflection and transmission properties of electromagnetic waves and thermal emission spectra using one-, two-, or three-dimensional micro/nanostructures. This review focuses on recent developments in metamaterials–manmade materials with exotic optical properties, and other nanostructured materials, such as gratings and photonic crystals, for application in radiative energy transfer and energy conversion systems.

关键词: metamaterial     nanostructured material     thermal radiative property     radiative energy transfer    

Dielectric property of polyimide/barium titanate composites and its influence factors (II)

LIU Weidong, ZHU Baoku, XIE Shuhui, XU Zhikang

《化学科学与工程前沿(英文)》 2008年 第2卷 第4期   页码 417-421 doi: 10.1007/s11705-008-0078-0

摘要: Using poly(amic acid) (PAA) as a precursor followed by thermal imidization, the polyimide/barium titanate composite films were successfully prepared by a direct mixing method and in situ process. The influence of processing factors, such as particle size, distribution mode and polymerization method on dielectric properties was studied. Results revealed that the dielectric constant (?) of the composite film increased by using bigger fillers or employing in situ polymerization and bimodal distribution. When the composite film containing 50 Vol-% of BaTiO with size in 100 nm was prepared via in situ process, its dielectric constant reached 45 at 10 kHz.

关键词: thermal imidization     dielectric constant     particle     precursor     titanate composite    

of hierarchical nanohybrid CNT@Ni-PS and its applications in enhancing the tribological, curing and thermal

Jinian Yang, Yuxuan Xu, Chang Su, Shibin Nie, Zhenyu Li

《化学科学与工程前沿(英文)》 2021年 第15卷 第5期   页码 1281-1295 doi: 10.1007/s11705-020-2007-9

摘要: Poor interfacial adhesion and dispersity severely obstruct the continued development of carbon nanotube (CNT)-reinforced epoxy (EP) for potential applications. Herein, hierarchical CNT nanohybrids using nickel phyllosilicate (Ni-PS) as surface decorations (CNT@Ni-PS) were synthesized, and the nanocomposites derived from varied mass fractions of EP and CNT@Ni-PS were prepared. The morphological structures, tribological performances, curing behaviors and thermal properties of EP/CNT@Ni-PS nanocomposites were carefully investigated. Results show that hierarchical CNT nanohybrids with homogeneous dispersion and well-bonded interfacial adhesion in the matrix are successfully obtained, presenting significantly improved thermal and tribological properties. Moreover, analysis on cure kinetics proves the excellent promotion of CNT@Ni-PS on the non-isothermal curing process, lowering the curing energy barrier steadily.

关键词: nickel phyllosilicate     surface decoration     tribological property     curing kinetics     thermal performance    

Microdamage study of granite under thermomechanical coupling based on the particle flow code

《结构与土木工程前沿(英文)》   页码 1413-1427 doi: 10.1007/s11709-023-0953-2

摘要: The thermomechanical coupling of rocks refers to the interaction between the mechanical and thermodynamic behaviors of rocks induced by temperature changes. The study of this coupling interaction is essential for understanding the mechanical and thermodynamic properties of the surrounding rocks in underground engineering. In this study, an improved temperature-dependent linear parallel bond model is introduced under the framework of a particle flow simulation. A series of numerical thermomechanical coupling tests are then conducted to calibrate the micro-parameters of the proposed model by considering the mechanical behavior of the rock under different thermomechanical loadings. Good agreement between the numerical results and experimental data are obtained, particularly in terms of the compression, tension, and elastic responses of granite. With this improved model, the thermodynamic response and underlying cracking behavior of a deep-buried tunnel under different thermal loading conditions are investigated and discussed in detail.

关键词: thermomechanical coupling effect     granite     improved linear parallel bond model     thermal property     particle flow code    

Modeling process-structure-property relationships for additive manufacturing

Wentao YAN, Stephen LIN, Orion L. KAFKA, Cheng YU, Zeliang LIU, Yanping LIAN, Sarah WOLFF, Jian CAO, Gregory J. WAGNER, Wing Kam LIU

《机械工程前沿(英文)》 2018年 第13卷 第4期   页码 482-492 doi: 10.1007/s11465-018-0505-y

摘要:

This paper presents our latest work on comprehensive modeling of process-structure-property relationships for additive manufacturing (AM) materials, including using data-mining techniques to close the cycle of design-predict-optimize. To illustrate the process-structure relationship, the multi-scale multi-physics process modeling starts from the micro-scale to establish a mechanistic heat source model, to the meso-scale models of individual powder particle evolution, and finally to the macro-scale model to simulate the fabrication process of a complex product. To link structure and properties, a high-efficiency mechanistic model, self-consistent clustering analyses, is developed to capture a variety of material response. The model incorporates factors such as voids, phase composition, inclusions, and grain structures, which are the differentiating features of AM metals. Furthermore, we propose data-mining as an effective solution for novel rapid design and optimization, which is motivated by the numerous influencing factors in the AM process. We believe this paper will provide a roadmap to advance AM fundamental understanding and guide the monitoring and advanced diagnostics of AM processing.

关键词: additive manufacturing     thermal fluid flow     data mining     material modeling    

Self-sacrificial templating synthesis of flower-like nickel phyllosilicates and its application as high-performance reinforcements in epoxy nanocomposites

《化学科学与工程前沿(英文)》 2022年 第16卷 第4期   页码 484-497 doi: 10.1007/s11705-021-2074-6

摘要: The nanocomposites of flower-like nickel phyllosilicate particles incorporated into epoxy resin were fabricated via an in-situ mixing process. The flower-like nickel phyllosilicate particles were firstly synthesized using a mild self-sacrificial templating method, and the morphology and lamellar structure were examined carefully. Several properties of mechanical, thermal and tribological responses of epoxy nanocomposites were performed. It was demonstrated that adequate flower-like nickel phyllosilicate particles dispersed well in the matrix, and the nanocomposites displayed enhanced tensile strength and elastic modulus but decreased elongation at break as expected. In addition, friction coefficient and wear rate were increased first and then decreased along with the particle content, and showed the lowest values at a mass fraction of 5%. Nevertheless, the incorporated flower-like nickel phyllosilicate particles resulted in the continuously increasing thermal stability of epoxy resin (EP) nanocomposites. This study revealed the giant potential of flower-like particles in preparing high-quality EP nanocomposites.

关键词: nickel phyllosilicate     flow-like structure     mechanical property     thermal stability     tribological performance    

A computational toolbox for molecular property prediction based on quantum mechanics and quantitativestructure-property relationship

《化学科学与工程前沿(英文)》 2022年 第16卷 第2期   页码 152-167 doi: 10.1007/s11705-021-2060-z

摘要: Chemical industry is always seeking opportunities to efficiently and economically convert raw materials to commodity chemicals and higher value-added chemical-based products. The life cycles of chemical products involve the procedures of conceptual product designs, experimental investigations, sustainable manufactures through appropriate chemical processes and waste disposals. During these periods, one of the most important keys is the molecular property prediction models associating molecular structures with product properties. In this paper, a framework combining quantum mechanics and quantitative structure-property relationship is established for fast molecular property predictions, such as activity coefficient, and so forth. The workflow of framework consists of three steps. In the first step, a database is created for collections of basic molecular information; in the second step, quantum mechanics-based calculations are performed to predict quantum mechanics-based/derived molecular properties (pseudo experimental data), which are stored in a database and further provided for the developments of quantitative structure-property relationship methods for fast predictions of properties in the third step. The whole framework has been carried out within a molecular property prediction toolbox. Two case studies highlighting different aspects of the toolbox involving the predictions of heats of reaction and solid-liquid phase equilibriums are presented.

关键词: molecular property     quantum mechanics     quantitative structure-property relationship     heat of reaction     solid-liquid phase equilibrium    

Convective heat transfer in helical coils for constant-property and variable-property flows with high

Yufei MAO, Liejin GUO, Bofeng BAI, Ximin ZHANG

《能源前沿(英文)》 2010年 第4卷 第4期   页码 546-552 doi: 10.1007/s11708-010-0116-8

摘要: Forced convection heat transfer of single-phase water in helical coils was experimentally studied. The testing section was constructed from a stainless steel round tube with an inner diameter of 10 mm, coil diameter of 300 mm, and pitch of 50 mm. The experiments were conducted over a wide Reynolds number range of 40000 to 500000. Both constant-property flows at normal pressure and variable-property flows at supercritical pressure were investigated. The contribution of secondary flow in the helical coil to heat transfer was gradually suppressed with increasing Reynolds number. Hence, heat transfer coefficients of the helical tube were close to those of the straight tube under the same flow conditions when the Reynolds number is large enough. Based on the experimental data, heat transfer correlations for both incompressible flows and supercritical fluid flows through helical coils were proposed.

关键词: convective heat transfer     helical coils     high Reynolds number     supercritical pressure     variable property    

A review on the application of nanofluids in enhanced oil recovery

《化学科学与工程前沿(英文)》 2022年 第16卷 第8期   页码 1165-1197 doi: 10.1007/s11705-021-2120-4

摘要: Enhanced oil recovery (EOR) has been widely used to recover residual oil after the primary or secondary oil recovery processes. Compared to conventional methods, chemical EOR has demonstrated high oil recovery and low operational costs. Nanofluids have received extensive attention owing to their advantages of low cost, high oil recovery, and wide applicability. In recent years, nanofluids have been widely used in EOR processes. Moreover, several studies have focused on the role of nanofluids in the nanofluid EOR (N-EOR) process. However, the mechanisms related to N-EOR are unclear, and several of the mechanisms established are chaotic and contradictory. This review was conducted by considering heavy oil molecules/particle/surface micromechanics; nanofluid-assisted EOR methods; multiscale, multiphase pore/core displacement experiments; and multiphase flow fluid-solid coupling simulations. Nanofluids can alter the wettability of minerals (particle/surface micromechanics), oil/water interfacial tension (heavy oil molecules/water micromechanics), and structural disjoining pressure (heavy oil molecules/particle/surface micromechanics). They can also cause viscosity reduction (micromechanics of heavy oil molecules). Nanofoam technology, nanoemulsion technology, and injected fluids were used during the EOR process. The mechanism of N-EOR is based on the nanoparticle adsorption effect. Nanoparticles can be adsorbed on mineral surfaces and alter the wettability of minerals from oil-wet to water-wet conditions. Nanoparticles can also be adsorbed on the oil/water surface, which alters the oil/water interfacial tension, resulting in the formation of emulsions. Asphaltenes are also adsorbed on the surface of nanoparticles, which reduces the asphaltene content in heavy oil, resulting in a decrease in the viscosity of oil, which helps in oil recovery. In previous studies, most researchers only focused on the results, and the nanoparticle adsorption properties have been ignored. This review presents the relationship between the adsorption properties of nanoparticles and the N-EOR mechanisms. The nanofluid behaviour during a multiphase core displacement process is also discussed, and the corresponding simulation is analysed. Finally, potential mechanisms and future directions of N-EOR are proposed. The findings of this study can further the understanding of N-EOR mechanisms from the perspective of heavy oil molecules/particle/surface micromechanics, as well as clarify the role of nanofluids in multiphase core displacement experiments and simulations. This review also presents limitations and bottlenecks, guiding researchers to develop methods to synthesise novel nanoparticles and conduct further research.

关键词: nanofluid     EOR mechanism     nanoparticle adsorption     interface property     internal property    

Experimental study on compaction-induced anisotropic mechanical property of rockfill material

Xiangtao ZHANG, Yizhao GAO, Yuan WANG, Yu-zhen YU, Xun SUN

《结构与土木工程前沿(英文)》 2021年 第15卷 第1期   页码 109-123 doi: 10.1007/s11709-021-0693-0

摘要: The anisotropy of rockfill materials has a significant influence on the performance of engineering structures. However, relevant research data are very limited, because of the difficulty with preparing specimens with different inclination angles using traditional methods. Furthermore, the anisotropy test of rockfill materials is complex and complicated, especially for triaxial tests, in which the major principal stress plane intersects with the compaction plane at different angles. In this study, the geometric characteristics of a typical particle fraction consisting of a specific rockfill material were statistically investigated, and the distribution characteristics of particle orientation in specimens prepared via different compaction methods were examined. For high-density rockfill materials, a set of specimen preparation devices for inclined compaction planes was developed, and a series of conventional triaxial compression tests with different principal stress direction angles were conducted. The results reveal that the principal stress direction angle has a significant effect on the modulus, shear strength, and dilatancy of the compacted rockfill materials. Analysis of the relationship between the principal stress direction angles, change in the stress state, and change in the corresponding dominant shear plane shows that the angle between the compacted surface and dominant shear plane is closely related to interlocking resistance associated with the particle orientation. In addition, different principal stress direction angles can change the extent of the particle interlocking effect, causing the specimen to exhibit different degrees of anisotropy.

关键词: rockfill     inclination of specimen preparation     anisotropy     mechanical property     mechanism    

Experimental research on the mechanical property of prestressing steel wire during and after heating

ZHENG Wenzhong, HU Qiong, ZHANG Haoyu

《结构与土木工程前沿(英文)》 2007年 第1卷 第2期   页码 247-254 doi: 10.1007/s11709-007-0031-1

摘要: The mechanical property of prestressing steel wire during and after heating is the key factor in the design of fire resistance and after-fire damage evaluation of prestressed structures. Tensile experiment of 16 prestressing steel wires ( = 1770 N/mm, = 5 mm, low relaxation of stress) at high temperature and tensile experiment of 14 prestressed steel wires after heating are carried out. According to the experiment, the shapes of stress-strain curves of steel wire at high temperature go smooth and the mechanical property indexes of the steel wire such as strength, modulus of elasticity, etc., degenerate continuously as temperature increased. According to the experiment after heating, the mechanical property of steel wire varies little when the highest temperature that the steel wire has ever been heated to is lower than 300vH; while the stress-strain curves of steel wire become more ductile and the mechanical property indexes of the steel wire degenerate gradually when the highest temperature is higher than 300vH. By applying the theory of viscoelastic mechanics, stress-strain curves of steel wire at high temperatures without loading rate influence are obtained. The law of mechanical property indexes of the wire is presented. The mathematical models of the stress-strain relationship of the pre-stressed steel wire are established. All can serve as basic data for the analysis of fire resistance and after-fire damage evaluation of pre-stressed structures.

深圳城市供水系统产权结构重组模式及评价

肖文,欧阳芳锐,王先甲

《中国工程科学》 2004年 第6卷 第7期   页码 48-52

摘要:

提出了城市供水系统产权结构重组的两种基本模式,运用制度经济学和管理学理论,提出产权结构模式评价的指标与方法,分析了这两种产权结构模式的特性和在这两种模式下不同利益主体的行为与利益关系的变化特点及优缺点,并提出了缓解劣势的手段与方法。

关键词: 城市供水     产权结构     产权重组     产权模式评价    

Meshing stiffness property and meshing status simulation of harmonic drive under transmission loading

《机械工程前沿(英文)》 2022年 第17卷 第2期 doi: 10.1007/s11465-022-0674-6

摘要: The multitooth meshing state of harmonic drive (HD) is an important basic characteristic of its high transformation precision and high bearing capacity. Meshing force distribution affects the load sharing of the tooth during meshing, and theoretical research remains insufficient at present. To calculate the spatial distributed meshing forces and loading backlashes along the axial direction, an iterative algorithm and finite element model (FEM) is proposed to investigate the meshing state under varied transmission loading. The displacement formulae of meshing point under tangential force are derived according to the torsion of the flexspline cylinder and the bending of the tooth. Based on the relationship of meshing forces and circumferential displacements, meshing forces and loading backlashes in three cross-sections are calculated with the algorithm under gradually increased rotation angles of circular spline, and the results are compared with FEM. Owing to the taper deformation of the cup-shaped flexspline, the smallest initial backlash and the earliest meshing point appear in the front cross-section far from the cup bottom, and then the teeth in the middle cross-section of the tooth rim enter the meshing and carry most of the loading. Theoretical and numerical research show that the flexibility is quite different for varied meshing points and tangential force amplitude because of the change of contact status between the flexspline and the wave generator. The meshing forces and torsional stiffness of the HD are nonlinear with the torsional angle.

关键词: harmonic drive     meshing flexibility matrix     meshing force     loading backlash     flexspline     contact analysis    

标题 作者 时间 类型 操作

novel strategy for the construction of silk fibroin–SiO composite aerogel with enhanced mechanical propertyand thermal insulation performance

期刊论文

Adsorption property of direct fast black onto acid-thermal modified sepiolite and optimization of adsorption

Chengyuan SU, Weiguang LI, Yong WANG

期刊论文

Thermal radiative properties of metamaterials and other nanostructured materials: A review

Ceji FU, Zhuomin M. ZHANG

期刊论文

Dielectric property of polyimide/barium titanate composites and its influence factors (II)

LIU Weidong, ZHU Baoku, XIE Shuhui, XU Zhikang

期刊论文

of hierarchical nanohybrid CNT@Ni-PS and its applications in enhancing the tribological, curing and thermal

Jinian Yang, Yuxuan Xu, Chang Su, Shibin Nie, Zhenyu Li

期刊论文

Microdamage study of granite under thermomechanical coupling based on the particle flow code

期刊论文

Modeling process-structure-property relationships for additive manufacturing

Wentao YAN, Stephen LIN, Orion L. KAFKA, Cheng YU, Zeliang LIU, Yanping LIAN, Sarah WOLFF, Jian CAO, Gregory J. WAGNER, Wing Kam LIU

期刊论文

Self-sacrificial templating synthesis of flower-like nickel phyllosilicates and its application as high-performance reinforcements in epoxy nanocomposites

期刊论文

A computational toolbox for molecular property prediction based on quantum mechanics and quantitativestructure-property relationship

期刊论文

Convective heat transfer in helical coils for constant-property and variable-property flows with high

Yufei MAO, Liejin GUO, Bofeng BAI, Ximin ZHANG

期刊论文

A review on the application of nanofluids in enhanced oil recovery

期刊论文

Experimental study on compaction-induced anisotropic mechanical property of rockfill material

Xiangtao ZHANG, Yizhao GAO, Yuan WANG, Yu-zhen YU, Xun SUN

期刊论文

Experimental research on the mechanical property of prestressing steel wire during and after heating

ZHENG Wenzhong, HU Qiong, ZHANG Haoyu

期刊论文

深圳城市供水系统产权结构重组模式及评价

肖文,欧阳芳锐,王先甲

期刊论文

Meshing stiffness property and meshing status simulation of harmonic drive under transmission loading

期刊论文